RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2025, том 14(32), выпуск 2, страницы 86–96 (Mi pa424)

On three summation equations for functions that are holomorphic in the plane with a cut along a polygonal line

F. N. Garif'yanova, E. V. Strezhnevab

a Kazan State Power Engineering University, 51 Krasnosel'skaya street, Kazan 420066, Russia
b Kazan National Research Technical University named after A. N. Tupolev, 10 K.Marx street, Kazan, 42011, Russia

Аннотация: We study three four-element summation equations in the class of functions that are holomorphic outside a polygonal line and vanish at infinity. The polygonal line is part of the boundary of a unit square. We seek a solution in the form of a Cauchy-type integral with unknown density satisfying some additional conditions. The regularization of the equation on the polygonal line is achieved by introducing an involutive piecewise-linear shift that reverses the orientation of the line. We rely on the contraction mapping method in a Banach space to prove that the resulting Fredholm equation of the second kind is solvable. Finally, we give the conditions for the equivalence of the regularization and consider some applications to interpolation problems for entire functions.

Ключевые слова: summation equation, regularization method, Carleman boundary-value problem.

УДК: 517.18

MSC: 11F03, 30D20

Поступила в редакцию: 22.10.2024
Исправленный вариант: 12.05.2025
Принята в печать: 13.05.2025

Язык публикации: английский

DOI: 10.15393/j3.art.2025.18310



© МИАН, 2026