Cauchy projectors on non-smooth and non-rectifiable curves
B. A. Kats,
S. R. Mironova,
A. Yu. Pogodina Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russia
Аннотация:
Let
$f(t)$ be defined on a closed Jordan curve
$\Gamma$ that
divides the complex plane on two domains
$D^{+}$,
$D^{-}$,
$\infty\in D^{-}$. Assume that it is representable as a difference
$f(t)=F^{+}(t)-F^{-}(t)$,
$t\in\Gamma$, where
$F^{\pm}(t)$ are limits
of a holomorphic in
$\overline{\mathbb C}\setminus\Gamma$ function
$F(z)$ for
$D^{\pm}\ni z\to t\in\Gamma$,
$F(\infty)=0$. The mappings
$f\mapsto F^{\pm}$ are called Cauchy projectors.
Let
$H_{\nu}(\Gamma)$ be the space of functions satisfying on
$\Gamma$
the Hölder condition with exponent
$\nu\in (0,1].$ It is well
known that on any smooth (or piecewise-smooth) curve
$\Gamma$ the
Cauchy projectors map
$H_{\nu}(\Gamma)$ onto itself for any
$\nu\in
(0, 1)$, but for essentially non-smooth curves this proposition is
not valid.
We will show that even for non-rectifiable curves the Cauchy projectors
continuously map the intersection of all spaces
$H_{\nu}(\Gamma)$,
$0<\nu<1$ (considered as countably-normed Frechet space) onto itself.
Ключевые слова:
Cauchy projectors, non-smooth curves, non-rectifiable curves.
УДК:
517.544
MSC: 30E20 Поступила в редакцию: 28.07.2018
Исправленный вариант: 24.12.2018
Принята в печать: 21.12.2018
Язык публикации: английский
DOI:
10.15393/j3.art.2019.5870