On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions
M. A. Komarov Vladimir State University,
Gor'kogo street 87, Vladimir 600000, Russia
Аннотация:
We study a uniform approximation by differences
$\Theta_1-\Theta_2$ of simplest fractions (s.f.'s), i. e., by logarithmic derivatives of rational functions on continua
$K$ of the class
$\Omega_r$,
$r>0$ (i. e., any points
$z_0, z_1\in K$ can be joined by a rectifiable curve in
$K$ of length
$\le r$). We prove that for any proper one-pole fraction
$T$ of degree
$m$ with a zero residue there are such s.f.'s
$\Theta_1,\Theta_2$ of order
$\le (m-1)n$ that $\|T+\Theta_1-\Theta_2\|_K\le 2r^{-1}A^{2n+1}n!^2/(2n)!^2$, where the constant
$A$ depends on
$r$,
$T$ and
$K$. Hence, the rate of approximation of any fixed individual rational function
$R$, whose integral is single-valued on
$\mathbb{C}$, has the same order. This result improves the famous estimate
$\|R+\Theta_1-\Theta_2\|_{C(K)}\le 2e^r r^n/n!$, given by Danchenko for the case
$\|R\|_{C(K)}\le 1$.
Ключевые слова:
difference of simplest fractions, rate of uniform approximation, logarithmic derivative of rational function.
УДК:
517.538.5
MSC: 41A25,
41A20 Поступила в редакцию: 16.05.2018
Исправленный вариант: 14.09.2018
Принята в печать: 15.09.2018
Язык публикации: английский
DOI:
10.15393/j3.art.2018.5510