RUS  ENG
Полная версия
ЖУРНАЛЫ // Оптика и спектроскопия // Архив

Оптика и спектроскопия, 2022, том 130, выпуск 2, страницы 260–267 (Mi os1667)

Физическая оптика

Пучки Гельмгольца–Гаусса с квадратичной радиальной зависимостью

А. Б. Плаченовa, Г. Н. Дьяковаb

a МИРЭА — Российский технологический университет, 119454 Москва, Россия
b Санкт-Петербургский государственный университет аэрокосмического приборостроения, 190000 Санкт-Петербург, Россия

Аннотация: Построен новый класс локализованных решений параксиального параболического уравнения. Каждое из них имеет вид произведения некоторой гауссовски локализованной осесимметричной функции (не являющейся фундаментальной модой) и амплитудного множителя. Показано, что соответствующую амплитудную функцию можно выразить через произвольное решение yравнения Гельмгольца на вспомогательной двулистной комплексной поверхности. Рассмотренный класс локализованных решений содержит как известные ранее, так и новые семейства решений параболического уравнения. Среди них содержатся решения, описывающие оптические вихри различного порядка, расположенные как на оптической оси, так и вне ее.

Ключевые слова: параболическое уравнение, квадратичные пучки, Гаусс, Гельмгольц, Бессель.

Поступила в редакцию: 10.05.2021
Исправленный вариант: 07.11.2021
Принята в печать: 08.11.2021

DOI: 10.21883/OS.2022.02.51993.2269-21



Реферативные базы данных:


© МИАН, 2026