Аннотация:
Рассматривается задача классификации подков Смейла с точки зрения локальной топологической сопряженности порождающих их двумерных отображений. Показывается, что существует 10 различных типов линейных подков. В случае нелинейных подков, как было установлено в недавней работе [4], различных типов может быть бесконечно много. Однако этот результат относится к новому классу подков, так называемым полуориентируемым подковам, которые могут существовать у эндоморфизмов (необратимых отображений) диска, а также у диффеоморфизмов, заданных на неориентируемых двумерных многообразиях. В настоящей работе дается также краткий обзор соответствующих результатов из [4].