RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2025, том 118, выпуск 4, страницы 690–696 (Mi mzm14930)

Статьи, опубликованные в английской версии журнала

Application of the Gakhov–Muskhelishvili Formula for Finding the Zeros of Piecewise Analytic Functions

S. I. Bezrodnykha, P. A. Gvozdevba, N. M. Gordeevaa

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
b Bauman Moscow State Technical University

Аннотация: We consider piecewise analytic functions $\mathscr{F}(z)$ with finitely many complex zeros and with line of discontinuinity coinciding with the real axis. For this type of functions, the paper presents an explicit representation of Gakhov–Muskhelishvili type known in the theory of the Riemann linear conjugation problem for analytic functions. The obtained representation reduces the problem of calculation of zeros of the function $\mathscr{F}(z)$ to finding the zeros of an explicitly written polynomial. We apply the result to a function which arises in study of effect of an electric field on a plasma layer.

Ключевые слова: zero of an analytic function, Riemann problem for analytic functions, Cauchy type integral, solution of transcendental equation.

Поступило: 08.07.2025
Исправленный вариант: 08.07.2025

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2025, 118:4, 690–696

Реферативные базы данных:


© МИАН, 2026