RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2025, том 118, выпуск 4, страницы 666–679 (Mi mzm14929)

Статьи, опубликованные в английской версии журнала

A Solution of the Open Problem on Total Irregularity of Trees with Specified Leaves

S. Ahmada, R. Farooqa, K. C. Dasb

a National University of Sciences and Technology, Islamabad, Pakistan
b SungKyunKwan University, Suwon, Republic of Korea

Аннотация: Let $G$ be a graph with vertex set $V(G)$, where the degree of a vertex $x\in V(G)$ is denoted by $d_x$. The total irregularity measure ($\mathrm{irr}_t$) of $G$ is defined as
\begin{equation*} \mathrm{irr}_t(G)=\sum_{\{x,y\} \subseteq V(G)} |d_x - d_y|. \end{equation*}
This note aims to establish the best possible upper and lower bounds on the total irregularity index of $n$-vertex trees with a fixed number of leaves (pendants), thereby resolving a problem posed in Yousaf et al. [“On total irregularity index of trees with given number of segments or branching vertices,” Chaos Soliton Fractals 157, 111925 (2022)]. Additionally, we extend our analysis to chemical trees, deriving corresponding bounds and exploring their structural implications within this class. Our results also yield similar findings for the total $\sigma$-irregularity index.

Ключевые слова: total irregularity index, total $\sigma$-irregularity index, extremal tree, extremal chemical tree, leaf.

Поступило: 18.02.2025
Исправленный вариант: 09.07.2025

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2025, 118:4, 666–679

Реферативные базы данных:


© МИАН, 2026