RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2025, том 118, выпуск 1, страницы 23–34 (Mi mzm14909)

Статьи, опубликованные в английской версии журнала

Davenport Constant for Finite Abelian Groups with Higher Rank

A. Biswasa, E. Mazumdarb

a Department of Mathematics, National Institute of Technology Silchar, India
b Mathematical and Physical Sciences, School of Arts and Sciences, Ahmedabad University, India

Аннотация: For a finite abelian group $G$ and $r\in \mathbb{N}$, the $r$-wise Davenport constant of $G$, denoted by $D_r(G)$, is defined to be the least positive integer $k$ such that every sequence of length at least $k$ has $r$ disjoint nontrivial zero-sum subsequences. Several mathematicians have studied the behavior of this invariant. In this paper, we examine its value for any finite abelian group, specifically for $p$-groups. On the other hand, for $r=1$, the invariant $D_r(G)$ is known as the Davenport constant, which is denoted by $D(G)$. A long-standing conjecture is that the Davenport constant of a finite abelian group $G =C_{n_1}\times \cdots\times C_{n_d}$ of rank $d \in \mathbb{N}$ is
\begin{equation*} 1+\sum_{i=1}^d (n_i-1). \end{equation*}
This conjecture is false in general, but it remains to know for which groups it is true. In this paper, we consider groups of the form $G = (C_p)^{d-1} \times C_{pq}$, where $p$ is a prime and $q\in \mathbb{N}$, and provide a sufficient condition for the conjecture to hold.

Ключевые слова: zero-sum problem, Davenport constant.

Поступило: 31.10.2024
Исправленный вариант: 29.04.2025

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2025, 118:1, 23–34

Реферативные базы данных:


© МИАН, 2026