RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2014, том 95, выпуск 5, страницы 721–737 (Mi mzm11678)

Эта публикация цитируется в 4 статьях

Статьи, опубликованные в английской версии журнала

Normal forms, inner products, and Maslov indices of general multimode squeezings

A. M. Chebotarev, T. V. Tlyachev

Faculty of Physics, Moscow State University, Moscow, Russia

Аннотация: In this paper, we present a purely algebraic construction of the normal factorization of multimode squeezed states and calculate their inner products. This procedure allows one to orthonormalize bases generated by squeezed states. We calculate several correct representations of the normalizing constant for the normal factorization, discuss an analog of the Maslov index for squeezed states, and show that the Jordan decomposition is a useful mathematical tool for problems with degenerate Hamiltonians. As an application of this theory, we consider a nontrivial class of squeezing problems which are solvable in any dimension.

Ключевые слова: second quantization, normal ordering, canonical transformation, Maslov index, multimode squeezing.

MSC: Primary 81Q05; Secondary 81Q15

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2014, 95:5, 721–737

Реферативные базы данных:


© МИАН, 2026