Аннотация:
Предложен метод использования данных с динамической структурой для описания связей между эйлеровой сеткой и лагранжевыми объектами, а также реализующий его алгоритм, имеющий асимптотическую сложность $O(N^*\log(N))$ при создании структуры данных и $O(N)$ для поддержания ее в актуальном состоянии. Продемонстрирована работоспособность алгоритма на примере задачи о движении твердых частиц в газовой среде в наиболее неблагоприятном случае: лагранжевы координаты частиц не упорядочены в пространстве, при этом как отношение времени релаксации частицы к шагу интегрирования, так и отношение массы частицы к массе газа могут иметь произвольную величину.
Ключевые слова:
механика сплошных сред, многофазная среда, эйлерова сетка, лагранжевы частицы, данные с динамической структурой, взаимодействие.