Аннотация:
В статье рассматриваются неориентированные кратные графы произвольной натуральной кратности $k>1$. Кратный граф содержит ребра трех типов: обычные, кратные и мультиребра. Ребра последних двух типов представляют собой объединение $k$ связанных ребер, которые соединяют $2$ или $(k+1)$ вершину соответственно. Связанные ребра могут использоваться только согласованно. Делимые графы представляют собой специальный класс кратных графов. Их основная особенность состоит в возможности разделить граф на $k$ частей, которые будут согласованы на связанных ребрах и не будут иметь общих ребер. Каждая часть является обычным графом. Кратное дерево представляет собой кратный граф без кратных циклов. Количество ребер может быть разным для кратных деревьев с одинаковым количеством вершин. Также можно рассмотреть остовные деревья в кратном графе. Остовное дерево является полным, если кратный путь, соединяющий любые две выбранные вершины, существует в дереве тогда и только тогда, когда такой путь существует в исходном графе. Задача о минимальном полном остовном дереве в кратном графе NP-трудна даже в случае делимого графа. В данной статье мы получим точный алгоритм для задачи о минимальном полном остовном дереве в делимом кратном графе. Также мы определим подкласс делимых графов, для которых алгоритм будет выполняться за полиномиальное время.