RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 1999, том 4, страницы 163–175 (Mi ljm155)

on contact equivalence of holomorphic Monge–Ampère equations

D. V. Tunitsky

International Center "Sophus Lie"

Аннотация: This paper deals with holomorphic Monge–Ampère equations on 5-dimensional complex contact manifolds, i.e. Monge–Ampère equations with two complex independent variables. If a Monge–Ampère equation is in general position,then a complex affine connection can be put in correspondence to this equation in natural manner. This correspondence allows to formulate and prove a number of results on contact equivalence of Monge–Ampère equations using suitable properties of affine connections.

Ключевые слова: Monge–Ampére equation, characteristic bundle, characteristic connection, contact equivalence, contact symmetry, homogeneous equation.

Представлено: Б. Н. Шапуков
Поступило: 27.07.1999

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026