Аннотация:
According to Hilbert's theorem, the Lobachevsky plane $L^2$ does not admit a regular isometric immersion into $E^3$. The question on the existence of isometric immersion of $L^2$ into $E^4$ remains open. We consider isometric immersions into $E^4$ with flat normal connection and find a fundamental system of two partial differential equations of the second order for two functions. We prove the theorems on the non-existence of global and local isometric immersions for the case under consideration.
Ключевые слова и фразы:
isometric immersion, indicatrix, curvature, asymptotic line.