RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2020, том 16, номер 3, страницы 208–220 (Mi jmag754)

Эта публикация цитируется в 1 статье

On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection

Yuriy Aminov

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

Аннотация: According to Hilbert's theorem, the Lobachevsky plane $L^2$ does not admit a regular isometric immersion into $E^3$. The question on the existence of isometric immersion of $L^2$ into $E^4$ remains open. We consider isometric immersions into $E^4$ with flat normal connection and find a fundamental system of two partial differential equations of the second order for two functions. We prove the theorems on the non-existence of global and local isometric immersions for the case under consideration.

Ключевые слова и фразы: isometric immersion, indicatrix, curvature, asymptotic line.

MSC: 53C23, 53C45

Поступила в редакцию: 30.04.2020

Язык публикации: английский

DOI: 10.15407/mag16.03.208



Реферативные базы данных:


© МИАН, 2026