Эта публикация цитируется в
6 статьях
Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds
Uday Chand Dea,
Krishanu Mandalb a Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kol-700019, West Bengal, India
b Department of Mathematics, K.K. Das College, GRH-17, Baishnabghata-Patuli, Kol-700084, West Bengal, India
Аннотация:
An
$\eta$-Einstein paracontact manifold
$M$ admits a Ricci soliton
$(g,\xi)$ if and only if
$M$ is a
$K$-paracontact Einstein manifold provided one of the associated scalars
$\alpha$ or
$\beta$ is constant. Also we prove the non-existence of Ricci soliton in an
$N(k)$-paracontact metric manifold
$M$ whose potential vector field is the Reeb vector field
$\xi$. Moreover, if the metric
$g$ of an
$N(k)$-paracontact metric manifold
$M^{2n+1}$ is a gradient Ricci soliton, then either the manifold is locally isometric to a product of a flat
$(n+1)$-dimensional manifold and an
$n$-dimensional manifold of negative constant curvature equal to
$-4$, or
$M^{2n+1}$ is an Einstein manifold. Finally, an illustrative example is given.
Ключевые слова и фразы:
paracontact manifold,
$N(k)$-paracontact manifold, Ricci soliton, gradient Ricci soliton, Einstein manifold.
MSC: 53B30,
53C15,
53C25,
53C50,
53D10,
53D15. Поступила в редакцию: 14.02.2018
Исправленный вариант: 01.06.2018
Язык публикации: английский
DOI:
10.15407/mag15.03.307