Эта публикация цитируется в
3 статьях
Propagation of singularities for large solutions of quasilinear parabolic equations
Yevgeniia A. Yevgenieva Institute of Applied Mathematics and Mechanics of the National Academy of Sciences ofUkraine, 1 Dobrovol'skogo Str., Slavyansk, Donetsk Region, 84100, Ukraine
Аннотация:
The quasilinear parabolic equation with an absorption potential is considered:
\begin{equation*} \left(|u|^{q-1}u\right)_t-\Delta_p(u)=-b(t,x)|u|^{\lambda-1}u (t,x)\in(0,T)\times\Omega,\quad\lambda>p>q>0, \end{equation*}
where
$\Omega$ is a bounded smooth domain in
${R}^n$,
$n\geqslant1$,
$b$ is an absorption potential which is a continuous function such that
$b(t,x)>0$ in
$[0,T)\times\Omega$ and
$b(t,x)\equiv0$ in
$\{T\}\times\Omega$. In the paper, the conditions for
$b(t,x)$ that guarantee the uniform boundedness of an arbitrary weak solution of the mentioned equation in an arbitrary subdomain
$\Omega_0:\overline{\Omega}_0\subset\Omega$ are considered. Under the above conditions the sharp upper estimate for all weak solutions
$u$ is obtained. The estimate holds for the solutions of the equation with arbitrary initial and boundary data, including blow-up data (provided that such a solution exists), namely,
$u=\infty$ on
$\{0\}\times\Omega$,
$u=\infty$ on
$(0,T)\times\partial\Omega$.
Ключевые слова и фразы:
partial differential equations, quasilinear parabolic equation, degenerate absorption potential, large solution.
MSC: 35K59,
35B44,
35K58,
35K65. Поступила в редакцию: 24.11.2018
Язык публикации: английский
DOI:
10.15407/mag15.01.131