RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2004, том 11, номер 1, страницы 25–44 (Mi jmag188)

On the zeros of entire absolutely monotonic functions

Olga M. Katkova, Anna M. Vishnyakova

Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61103, Ukraine

Аннотация: By the definition, an entire absolutely monotonic function $f$ is an entire function representable in the form $f(z)=\int_0^{\infty}e^{zu}\,P(du)$, where $P$ is a nonnegative finite Borel measure on $\mathbf R^+$ and the integral converges absolutely for each $z\in\mathbf C$. This paper is devoted to the problem of characterization of the sets which can serve as zero sets of entire absolutely monotonic functions. We give the solution to the problem for the sets that do not intersect some angle $\{z:{|\arg z-\pi|}<\alpha\}$ for $\alpha>0$.

MSC: 30D10, 30D50, 44A10

Поступила в редакцию: 10.11.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026