Математика
Конечно-разностный метод решения первой краевой задачи для нагруженного нестационарного уравнения влагопереноса
М. Х. Бештоков Институт прикладной математики и автоматизации, Кабардино-Балкарский научный центр Российской академии наук, Нальчик
Аннотация:
Актуальность и цели. Одним из важных разделов теории дифференциальных уравнений являются нагруженные уравнения. Они позволяют моделировать процессы, в которых влияние внешних факторов существенно изменяет поведение системы. Особенно это важно в таких областях, как механика, гидрология и материаловедение. Изучение нагруженных уравнений способствует созданию более точных моделей, которые используются для анализа устойчивости и надежности конструкций, а также для прогнозирования различных явлений в природных и инженерных системах. Построены новые разностные схемы повышенного порядка точности для приближенного решения первой краевой задачи для нестационарного нагруженного уравнения влагопереноса в одномерных и многомерных областях. Нагруженные интегральные уравнения позволяют глубже понять распределение нагрузок и взаимодействие элементов в сложных системах. Изученные в данной работе уравнения играют значительную роль в решении актуальных задач экологии, сельского хозяйства, строительства и климатологии. Точное моделирование процессов влагопереноса позволяет эффективно управлять водными ресурсами, прогнозировать уровень грунтовых вод, оптимизировать орошение, обеспечивать устойчивость строительных конструкций и предсказывать последствия климатических изменений. Кроме того, развитие таких моделей способствует прогрессу в гидрологии и смежных науках.
Материалы и методы. Для приближенного решения поставленных задач используется метод конечных разностей и метод энергетических неравенств для получения априорных оценок решений предложенных разностных схем.
Результаты. Для каждой задачи построена разностная схема повышенного порядка аппроксимации. Методом энергетических неравенств для решения каждой разностной задачи получена априорная оценка. Из полученных оценок следуют единственность и устойчивость решения по правой части и начальным данным, а также сходимость решения разностной задачи к решению соответствующей исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.
Выводы. Разработаны новые разностные схемы повышенного порядка аппроксимации для приближенного решения поставленных задач.
Ключевые слова:
первая краевая задача, многомерное уравнение влагопереноса, нагруженное уравнение, априорная оценка, разностная схема, схема повышенного порядка точности, устойчивость и сходимость схемы
УДК:
519.63
DOI:
10.21685/2072-3040-2025-2-4