Математика
Вариант формальной теоремы о нулях линейных дифференциальных операторов
В. И. Титаренкоa,
А. И. Фомин a Государственный университет управления, Москва
Аннотация:
Актуальность и цели. В теории линейных дифференциальных уравнений существенную роль играют преобразования, порожденные дифференциальными заменами зависимых переменных. Исследование этих преобразований привело к созданию общей теории дифференциальных алгебр симметрии однородных линейных систем дифференциальных уравнений и к теории дифференциальных гомоморфизмов. Эти теории оказались тесно связанными с понятием теоремы о нулях линейных дифференциальных операторов (ЛДО). К настоящему времени доказано несколько теорем о нулях ЛДО, но этих теорем недостаточно для исследования алгебр дифференциальной симметрии и соотношений между разными типами линейных однородных систем дифференциальных уравнений. Формулировка и доказательство новых теорем о нулях ЛДО является актуальной задачей. Основная цель работы - формулировка и доказательство варианта формальной теоремы о нулях ЛДО. Другая важная цель - построение примеров применения теоремы, которые подтверждают ее полезность и основательность.
Материалы и методы. Приведены общие сведения о работах, в которых представлены теоремы о нулях ЛДО. Поясняется смысл формальных теорем о нулях и роль, которую такие частные теоремы могут играть в общей теории. Представлены основные обозначения и понятия, приведено определение теоремы о нулях линейных дифференциальных операторов для семейства модулей над кольцом скалярных линейных дифференциальных операторов. Описаны элементы теории псевдообратных матриц и операторов, которые используются при доказательстве основной теоремы работы.
Результаты. Формулируется и доказывается вариант формальной теоремы о нулях. Приведены примеры семейств линейных дифференциальных операторов, для которых выполняются условия теоремы 1 (теоремы 2, 3, 4). Описан метод построения локальных сечений в общей задаче псевдообращения; в новой ситуации применена псевдообратная матрица; использован специальный базис, в котором координаты ЛДО совпадают с его коэффициентами; введено полезное понятие матрицы главных символов ЛДО по столбцам.
Выводы. Результаты работы могут служить основой доказательства справедливости формальной теоремы о нулях для множества конкретных линейных дифференциальных операторов и семейств операторов.
Ключевые слова:
линейный дифференциальный оператор, алгебры дифференциальной симметрии, теоремы о нулях, формальная теорема, псевдообратный оператор, псевдообратная матрица, матрица главных символов линейного дифференциального оператора по столбцам
УДК:
517.956
DOI:
10.21685/2072-3040-2025-2-3