RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2025, выпуск 1, страницы 13–28 (Mi ivpnz824)

Математика

Операторы дифференциальной симметрии первого порядка канонических дифференциальных уравнений

А. И. Фомин, В. И. Титаренкоa

a Государственный университет управления, Москва

Аннотация: Актуальность и цели. Симметрия играет важную роль в механике и теоретической физике. Основными моделями в этих науках служат дифференциальные уравнения и системы уравнений. Поэтому изучение симметрий дифференциальных уравнений имеет не только теоретический, но и практический смысл. Канонические дифференциальные уравнения второго порядка являются одним из основных уравнений математической физики. В статье ставится задача описания операторов дифференциальной симметрии первого порядка канонических уравнений и образованных такими операторами алгебр Ли. Материалы и методы. Приведен краткий обзор общей теории дифференциальных замен зависимых переменных. Такие замены порождают операторы дифференциальной симметрии, а операторы первого порядка, в частности, образуют алгебры Ли относительно коммутатора. В общем виде описаны используемые понятия, введены канонические уравнения и инварианты Лапласа. Результаты. Сформулирована и доказана теорема о необходимых и достаточных условиях, при выполнении которых линейный дифференциальный оператор первого порядка является оператором дифференциальной симметрии канонического уравнения. Показано, как теорема применяется для описания множества операторов дифференциальной симметрии уравнений Эйлера - Пуассона. Установлен общий вид коммутатора операторов дифференциальной симметрии первого порядка и доказывается, что алгебра Ли операторов дифференциальной симметрии первого порядка уравнений Эйлера - Пуассона изоморфна алгебре Ли матриц второго порядка. Найдены операторы дифференциальной симметрии канонических уравнений с постоянными коэффициентами, а также канонических уравнений вида $(\partial_{xy}+f(y) \partial_{x}+\phi(x) \partial_{y})v=0$. Алгебры Ли таких операторов оказываются разрешимыми четырехмерными алгебрами Ли с одномерным центром. Выводы. Полученные результаты представляются достаточно значимыми. Но основным результатом является теорема 1, которая может быть использована для описания алгебр Ли дифференциальной симметрии операторов первого порядка в других, не затронутых в этой статье, интересных случаях.

Ключевые слова: линейный дифференциальный оператор, операторы дифференциальной симметрии, алгебры Ли дифференциальной симметрии, каноническое дифференциальное уравнения

УДК: 517.956:512.812

DOI: 10.21685/2072-3040-2025-1-2



© МИАН, 2026