Аннотация:Цель настоящего исследования — разработка и исследование новой модели с кратковременной памятью, в основе которой лежат искусственная нейронная сеть без эффекта кратковременной памяти и динамическая модель кратковременной памяти с астроцитарной модуляцией. Методы. Искусственная нейронная сеть представлена классической сверточной нейронной сетью, не обладающей кратковременной памятью. Кратковременная память моделируется в нашей гибридной модели с помощью модели Цодыкса-Маркрама, представляющей собой систему обыкновенных дифференциальных уравнений третьего порядка. Астроцитарная динамика моделируется среднеполевой моделью концентрации глиотрансмиттера. Результаты. Была разработана и исследована новая гибридная модель с кратковременной памятью с использованием сверточной нейронной сети и динамической модели синапса для задачи распознавания изображений. Приведены графики зависимости точности и ошибки от числа эпох для представленной модели. Введена метрика чувствительности распознавания изображений d-prime. Было проведено сравнение разработанной модели с рекуррентной нейронной сетью и конфигурацией новой модели без учета астроцитарной модуляции. Построена сравнительная таблица, показывающая лучшую точность распознавания для введенной модели. Заключение. В результате исследования показана возможность совмещения искусственной нейронной сети и динамической модели, расширяющей ее функционал. Сравнение предложенной модели с кратковременной памятью с использованием сверточной нейронной сети и динамической модели синапса с астроцитарной модуляцией с рекуррентной сетью показало эффективность предложенного подхода в имитации кратковременной памяти.