Аннотация:
Рассматриваются проблемы нелинейной динамики процессов обработки материалов резанием. На примере процесса точения предлагается математическая модель динамической системы, учитывающая динамическую связь, формируемую процессом резания. При этом принимаются во внимание следующие главные особенности динамической связи: зависимость сил резания от площади срезаемого слоя, запаздывания сил по отношению к упругим деформационным смещениям инструмента относительно обрабатываемой заготовки, ограничения, накладываемые на движения инструмента при сближении задней грани инструмента с обработанной частью заготовки, зависимость сил от скорости резания. Динамическая подсистема инструмента представлена линейной системой в плоскости, нормальной к поверхности резания. Главное внимание в статье уделено анализу формируемых в окрестности точки равновесия стационарных аттракторов (орбитально асимптотически устойчивых предельных циклов и двумерных инвариантных торов). Приводятся данные по бифуркационным преобразованиям стационарных аттракторов. Даются рекомендации по проектированию систем, имеющих требуемые стационарные аттракторы в пространстве состояния.
Ключевые слова:
Динамическая система, аттракторы, бифуркации, процесс резания материалов.