Аннотация:
Пусть $f(x)\in C_{[-1,1]}$. Через $\sigma_n[f,x]$ обозначим $n$-ю $(C,1)$-среднюю ряда Фурье–Лежандра функции $f(x)$. Справедлива следующая
Теорема. {\em Для того чтобы $\|\sigma_n[f,x]-f(x)\|_{C_{[-1,1]}}=O(1/n)$, необходимо и достаточно, чтобы $\widetilde\varphi(\theta)\in\operatorname{Lip}1$, где $\widetilde\varphi(\theta)$ есть функция, тригонометрически сопряженная функции $\varphi(\theta)=f(\cos\theta)$}.