Аннотация:
Изучаются системы полулинейных дифференциальных включений дробных порядков. Предполагается, что линейные части включений представлены операторами Хилле–Иосида в банаховых пространствах. Нелинейные части включений являются многозначными отображениями типа Каратеодори, зависящими от времени и конечного набора функций. Для исследования задачи существования решений такой системы используется теория дробного математического анализа, теория обобщенных метрических пространств, а также теория топологической степени для многозначных уплотняющих отображений. Представлен разрешающий многозначный оператор для данной системы и описаны его свойства. Показано, в частности, что этот мультиоператор является уплотняющим относительно специальной векторной меры некомпактности. Это дает возможность, применяя некоторые теоремы о неподвижной точке для указанных мультиоператоров, доказать локальную и глобальную теоремы существования интегральных решений данной системы. В последнем случае обосновывается также компактность множества таких решений и полунепрерывная сверху зависимость множества решений от начальных данных.