Аннотация:
Изучается разрешимость краевой задачи для системы пяти нелинейных дифференциальных уравнений с частными производными второго порядка при заданных нелинейных граничных условиях, описывающей состояние равновесия упругих непологих неоднородных изотропных оболочек с незакрепленными краями в рамках сдвиговой модели Тимошенко, отнесенных к произвольным криволинейным координатам. Краевая задача сводится к нелинейному операторному уравнению относительно обобщенных перемещений в соболевском пространстве, разрешимость которого устанавливается с использованием принципа сжатых отображений.