Аннотация:
В статье описывается решение задачи автоматизации процесса сегментации легочных узлов на снимках компьютерной томографии для расширения функционала разработанного ранее модуля определения размеров и объемов легочных узлов. Акцент в работе делается на сравнении точности работы моделей, имеющих архитектуры ResU-Net, Attention U-Net и Dense U-Net, при обучении на снимках компьютерной томографии в исходном виде и с применением двух предлагаемых трехканальных подходов к их предварительной обработке. Для трех рассмотренных архитектур достигнуты значения коэффициента схожести Дайса и пересечения над объединением в диапазонах 0,8570–0,8735 и 0,7545–0,7881 при обучении на трехканальных снимках с усреднением. Полученные результаты позволяют сделать вывод о том, что применение методов предварительной обработки является перспективным для повышения точности сегментации. Также в статье описано обучение модели сегментации долей легких. Доработанный программный модуль принимает на вход снимки компьютерной томографии, а его выходные данные представляют собой обработанные снимки и структурированный отчет DICOM SR.
Ключевые слова:
компьютерное зрение, сегментация, рак легкого, легочный узел, компьютерная томография, медицинские снимки, диагностика, система поддержки принятия врачебных решений.