RUS  ENG
Полная версия
ЖУРНАЛЫ // Информационные технологии и вычислительные системы // Архив

ИТиВС, 2024, выпуск 2, страницы 92–99 (Mi itvs861)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

О некоторых свойствах нелинейных интегральных моделей динамических процессов

С. В. Солодушаa, Е. Д. Антипинаab

a Институт систем энергетики им. Л. А. Мелентьева СО РАН, Иркутск, Россия
b Иркутский государственный университет, Иркутск, Россия

Аннотация: В статье представлены алгоритмы построения динамических моделей технических (энергетических) систем в условиях зашумленных данных. Рассматривается один класс нелинейных систем интегральных уравнений вольтерровского типа I рода с входным сигналом, состоящим из двух компонент. Хорошо известна задача идентификации входного сигнала линейных систем, когда путем дифференцирования интегральных уравнений Вольтерра I рода выполняется редукция к системе интегральных уравнений II рода. При построении моделей формируется управляющее входное воздействие, обеспечивающее заданный отклик динамической системы. Используются алгоритмы идентификации, основанные на теории полиномиальных уравнений Вольтерра. В работе рассмотрен случай при зашумленных исходных данных, в том числе, когда условие невырожденности матриц перед главной частью в некоторые фиксированные моменты времени нарушается.

Ключевые слова: идентификация, динамические процессы, интегральные модели, полиномиальные уравнения Вольтерра I рода.

DOI: 10.14357/20718632240209



Реферативные базы данных:


© МИАН, 2026