Аннотация:
Математические модели деформирования тонких оболочек, описанные в первой части статьи, представляют собой или вариационную задачу о минимуме функционала энергии деформации оболочки, или краевую задачу для дифференциальных уравнений равновесий оболочки. И в том, и в другом случае задаются еще краевые условия исходя из вида закрепления контура оболочек. Для решения поставленных задач рассмотрены различные методы. Применяя метод Ритца к вариационной задаче о минимуме функционала энергии деформации оболочки или метода Бубнова – Галеркина к краевой задаче для дифференциальных уравнений равновесий оболочки, получаются системы алгебраических уравнений линейных или нелинейных. Применение метода конечных элементов (МКЭ) к решению задач теории оболочек также приводит к системам алгебраических уравнений, порядок которых может быть очень большим. Для решения линейных систем алгебраических уравнений может быть применен метод Гаусса, если порядок системы не превышает $10^3$. Если же порядок системы линейных алгебраических уравнений превышает $10^3$, то для решения таких систем применяют итерационные методы. Для решения нелинейных задач теории оболочек применяют методы продолжения решения по параметру. Если за параметр принимается нагрузка, то это будет метод последовательных нагружений В. В. Петрова, который позволяет свести решение нелинейных задач к последовательному решению линейных задач с изменяющимися на каждом этапе нагружения коэффициентами. Для решения нелинейных задач теории оболочек рассмотрен также метод итераций, когда нелинейные члены переносятся в правую часть и последовательно изменяются на каждом этапе итерации. Для решения нелинейных задач теории оболочек рассмотрен еще метод наискорейшего спуска. А. Л. Гольденвейзером разработан специальный метод — метод асимптотического интегрирования уравнений теории оболочек, который также описан в предлагаемой статье. Если уравнение равновесия оболочек содержит разрывные функции (единичные функции, дельта-функции), то Г. Н. Белосточным разработан специальный метод решения таких уравнений, который также описан в статье. Приводятся примеры применения описанных методов для решения конкретных задач теории оболочек.