RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2025, том 25, выпуск 3, страницы 345–365 (Mi isu1089)

Научный отдел
Механика

Математические модели деформирования оболочечных конструкций и алгоритмы их исследования. Часть II. Алгоритмы исследования оболочечных конструкций

В. В. Карпов, П. А. Бакусов, А. М. Масленников, А. А. Семенов

Санкт-Петербургский государственный архитектурно-строительный университет, Россия, 190005, г. Санкт-Петербург, ул. 2-я Красноармейская, д. 4

Аннотация: Математические модели деформирования тонких оболочек, описанные в первой части статьи, представляют собой или вариационную задачу о минимуме функционала энергии деформации оболочки, или краевую задачу для дифференциальных уравнений равновесий оболочки. И в том, и в другом случае задаются еще краевые условия исходя из вида закрепления контура оболочек. Для решения поставленных задач рассмотрены различные методы. Применяя метод Ритца к вариационной задаче о минимуме функционала энергии деформации оболочки или метода Бубнова – Галеркина к краевой задаче для дифференциальных уравнений равновесий оболочки, получаются системы алгебраических уравнений линейных или нелинейных. Применение метода конечных элементов (МКЭ) к решению задач теории оболочек также приводит к системам алгебраических уравнений, порядок которых может быть очень большим. Для решения линейных систем алгебраических уравнений может быть применен метод Гаусса, если порядок системы не превышает $10^3$. Если же порядок системы линейных алгебраических уравнений превышает $10^3$, то для решения таких систем применяют итерационные методы. Для решения нелинейных задач теории оболочек применяют методы продолжения решения по параметру. Если за параметр принимается нагрузка, то это будет метод последовательных нагружений В. В. Петрова, который позволяет свести решение нелинейных задач к последовательному решению линейных задач с изменяющимися на каждом этапе нагружения коэффициентами. Для решения нелинейных задач теории оболочек рассмотрен также метод итераций, когда нелинейные члены переносятся в правую часть и последовательно изменяются на каждом этапе итерации. Для решения нелинейных задач теории оболочек рассмотрен еще метод наискорейшего спуска. А. Л. Гольденвейзером разработан специальный метод  — метод асимптотического интегрирования уравнений теории оболочек, который также описан в предлагаемой статье. Если уравнение равновесия оболочек содержит разрывные функции (единичные функции, дельта-функции), то Г. Н. Белосточным разработан специальный метод решения таких уравнений, который также описан в статье. Приводятся примеры применения описанных методов для решения конкретных задач теории оболочек.

Ключевые слова: упругие тонкие оболочки, математическая модель, алгоритмы решения нелинейных задач, численные методы, устойчивость оболочек.

УДК: 539.3

Поступила в редакцию: 16.01.2023
Исправленный вариант: 16.04.2023

DOI: 10.18500/1816-9791-2025-25-3-345-365



© МИАН, 2026