RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2025, том 25, выпуск 3, страницы 332–344 (Mi isu1088)

Научный отдел
Механика

Колебания конечномерных моделей растяжимой цепной линии

Е. А. Дегилевичab, А. С. Смирновac

a Институт проблем машиноведения Российской академии наук, Россия, 199178, г. Санкт-Петербург, Большой пр. В. О., д. 61
b ООО «Газпромнефть – Промышленные Инновации», Россия, 197350, г. Санкт-Петербург, дор. в Каменку, д. 74, лит. А, пом. часть, пом. 1-Н
c Санкт-Петербургский политехнический университет Петра Великого, Россия, 195251, г. Санкт-Петербург, ул. Политехническая, д. 29

Аннотация: Настоящая статья посвящена исследованию собственных частот колебаний конечномерных моделей растяжимой гибкой цепной линии. Приводятся аналитическое решение для двухгантельной и трехгантельной моделей, а также результаты компьютерного моделирования двадцатигантельной схемы растяжимой цепной линии. В случае аналитического подхода применяется координатный метод решения, при котором расписываются координаты сосредоточенных масс гантельных схем в отклоненном положении. В случае численного подхода используется программный комплекс MSC.ADAMS, позволяющий анализировать статику, кинематику и динамику многотельных систем. Полученные результаты для рассматриваемых моделей растяжимой цепной линии находятся в хорошем качественном соответствии между собой. Кроме того, при рассмотрении предельных переходов от растяжимого варианта к нерастяжимому также наблюдается хорошая согласованность ожидаемых эффектов с найденными результатами. Для конечномерной двадцатигантельной модели нерастяжимой цепной линии с сосредоточенными параметрами проводится сопоставление первых трех безразмерных частот с частотами непрерывной модели, значения которых были найдены ранее. Наблюдается отличная схожесть результатов, подтверждающих применимость двадцатигантельной схемы для описания динамики цепной линии на низших частотах колебаний. Помимо определения частот, привычных для классической нерастяжимой цепной линии, проводится анализ новых «мигрирующих» частот, которые появляются вследствие возникновения дополнительных степеней свободы из-за учета растяжимости. Строятся частотные зависимости от параметра, характеризующего податливость цепной линии, что позволяет оценить, как быстро «мигрирующие» частоты перемещаются из высокочастотного диапазона в зону низших частот по мере ослабления жесткости цепи. Полученные формулы и рассмотренные модели имеют как теоретическую ценность, так и хорошую применимость для прикладных задач.

Ключевые слова: цепная линия, частоты колебаний, растяжимость, конечномерная модель.

УДК: 534.014

Поступила в редакцию: 10.09.2024
Исправленный вариант: 12.10.2024

DOI: 10.18500/1816-9791-2025-25-3-332-344



© МИАН, 2026