RUS  ENG
Полная версия
ЖУРНАЛЫ // Международный научно-исследовательский журнал // Архив

Междунар. науч.-исслед. журн., 2017, выпуск 1-2(55), страницы 82–86 (Mi irj167)

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

Об одном частном решении пространственной задачи гиперзвукового обтекания тонкого крыла переменной формы

В. И. Богатко, Е. А. Потехина

Санкт-Петербургский государственный университет

Аннотация: Работа посвящена дальнейшему исследованию задачи обтекания тонкого крыла переменной формы гиперзвуковым потоком газа. Головная ударная волна считается присоединенной к передней кромке крыла, по крайней мере, в одной точке. Решение строится с помощью метода тонкого ударного слоя. При определении поправок первого приближения два уравнения полученной системы могут быть проинтегрированы независимо от остальных. Введение новой функция и применение преобразования Эйлера-Ампера позволяет построить решение, зависящее от двух произвольных функций и неизвестной формы фронта головной ударной волны. Для определения этих функций получена интегро-дифференциальная система уравнений. В настоящей работе приведен один из вариантов полуобратного метода построения решения, при котором задается вид одной из произвольных функций. Форма обтекаемого тела находится в процессе построения решения задачи. Построено частное решение интегро-дифференциальной системы уравнений. Получены формулы для определения формы фронта ударной волны, поверхности обтекаемого тела, расстояния между ударной волной и поверхностью тела, параметров течения на поверхности крыла.

Ключевые слова: газовая динамика, гиперзвуковое обтекание тел, нестационарные течения, дифференциальные уравнения в частных производных, малый параметр.

DOI: 10.23670/IRJ.2017.55.017



© МИАН, 2026