RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2025, том 244, страницы 79–85 (Mi into1381)

Метод голоморфной регуляризации задачи Коши для одного класса нелинейных тихоновских систем

Д. А. Маслов

Национальный исследовательский университет «Московский энергетический институт»

Аннотация: Рассматривается задача Коши для нелинейных тихоновских систем, т.е. систем дифференциальных уравнений, часть из которых являются сингулярно возмущёнными. Исследуется специальный случай, при котором часть системы с сингулярно возмущёнными уравнениями линейна относительно переменных, входящих в неё с производными. Для исследуемой задачи разработан метод голоморфной регуляризации: введено понятие псевдоголоморфного решения, доказана теорема его существования, приведён способ получения коэффициентов ряда по степеням малого параметра, представляющего псевдоголоморфное решение.

Ключевые слова: тихоновская система дифференциальных уравнений, малый параметр, метод голоморфной регуляризации

УДК: 517.928

MSC: 34E15

DOI: 10.36535/2782-4438-2025-244-79-85



© МИАН, 2026