Аннотация:
Рассматривается задача Коши для системы нелинейных дифференциальных уравнений, структурно похожая на классические эволюционные уравнения Навье—Стокса для несжимаемой жидкости. Основное отличие этой системы состоит в том, что она порождена не стандартными операторами градиента, дивергенции и poтopa, а многомерным оператором Коши—Римана, его комплексом совместности (который обычно называется комплексом Дольбо) и его формально сопряженным оператором. Схожесть структуры позволяет доказать для этой задачи теорему существования слабых решений и теорему об открытом отображении на шкале специально построенных пространств Бохнера—Соболева. Кроме того, получен критерий существования «сильного» решения в данных пространствах.