Poncelet pairs of a circle and parabolas from a confocal family and Painlevé VI equations
V. Dragovićab,
M. H. Muradac a Department of Mathematical Sciences, The University of Texas at Dallas,
Richardson, TX, USA
b Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia
c Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
Аннотация:
We study pairs of conics
$(\mathcal{D},\mathcal{P})$, called
$n$-Poncelet pairs, such that an
$n$-gon, called an
$n$-Poncelet polygon, can be inscribed into
$\mathcal{D}$ and circumscribed about
$\mathcal{P}$. Here,
$\mathcal{D}$ is a circle and
$\mathcal{P}$ is a parabola from a confocal pencil
$\mathcal{F}$ with the focus
$F$. We prove that the circle contains
$F$ if and only if every parabola
$\mathcal{P}\in\mathcal{F}$ forms a
$3$-Poncelet pair with the circle. We prove that the center of
$\mathcal{D}$ coincides with
$F$ if and only if every parabola
$\mathcal{P}\in \mathcal{F}$ forms a
$4$-Poncelet pair with the circle. We refer to such property, observed for
$n=3$ and
$n=4$, as
$n$-isoperiodicity. We prove that
$\mathcal{F}$ is not
$n$-isoperiodic with any circle
$\mathcal{D}$ for
$n$ different from
$3$ and
$4$. Using isoperiodicity, we construct explicit algebraic solutions to Painlevé VI equations.
Ключевые слова:
cyclic
$n$-gons, confocal parabolas,
$n$-Poncelet pairs, Cayley conditions, isorotational families, Painlevé VI equations.
MSC: Primary
14H70,
34M55; Secondary
37J70,
37A10,
51N20 Поступило в редакцию: 20.01.2025
Исправленный вариант: 18.03.2025
Язык публикации: английский
DOI:
10.4213/im9697