RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2025, том 89, выпуск 4, страницы 54–110 (Mi im9617)

Эта публикация цитируется в 3 статьях

On long-time asymptotics of solution to the non-local Lakshmanan–Porsezian–Daniel equation with step-like initial data

Wen-Yu Zhou, Shou-Fu Tian, Xiao-Fan Zhang

School of Mathematics, China University of Mining and Technology, Xuzhou, P. R. China

Аннотация: The non-linear steepest descent method is employed to study the long-time asymptotics of solution to the non-local Lakshmanan–Porsezian–Daniel equation with step-like initial data
$$ q(x,0)=q_0(x)\to\begin{cases} 0, &x\to-\infty, \\ A, &x\to+\infty, \end{cases} $$
where $A$ is an arbitrary positive constant. We first construct the basic Riemann–Hilbert (RH) problem. After that, to eliminate the influence of singularities, we use the Blaschke–Potapov factor to deform the original RH problem into a regular RH problem which can be clearly solved. Then different asymptotic behaviors on the whole $(x,t)$-plane are analyzed in detail. In the region $(x/t)^2<1/(27\gamma)$ with $\gamma>0$, there are three real saddle points due to which the asymptotic behaviors have a more complicated error term. We prove that the asymptotic solution constructed by the leading and error terms depends on the values of $\operatorname{Im}v(-\lambda_j)$, $j=1,2,3$, where $v(\lambda_j) =-(1/(2\pi))\ln|1+r_1(\lambda_j)r_2(\lambda_j)|-(i/(2\pi))\Delta(\lambda_j)$, $\Delta(\lambda_j)=\int_{-\infty}^{\lambda_j}d \arg(1+r_1(\zeta)r_2(\zeta))$, $r_i(\xi)$, $i=1,2$, are the reflection coefficients and $\lambda_j$ are the saddle points of the phase function $\theta(\xi,\mu)$. Besides, the leading term is characterized by parabolic cylinder functions and satisfies boundary conditions. In the region $(x/t)^2>1/(27\gamma)$ with $\gamma>0$, there are one real and two conjugate complex saddle points. Based on the positions of these points, we improve the extension forms of the jump contours and successfully obtain the large-time asymptotic results of the solution in this case.

Ключевые слова: non-local Lakshmanan–Porsezian–Daniel equation, step-like initial data, Riemann–Hilbert problem, non-linear steepest descent method, long-time asymptotics.

УДК: 517.95

MSC: 35Q51, 35Q15, 35C20, 37K40

Поступило в редакцию: 15.06.2024
Исправленный вариант: 21.10.2024

Язык публикации: английский

DOI: 10.4213/im9617


 Англоязычная версия: Izvestiya: Mathematics, 2025, 89:4, 701–757

Реферативные базы данных:


© МИАН, 2026