Аннотация:
Приведены результаты обучения и тестирования искусственной нейронной сети распознаванию движений пальцев кисти человека на основе сигналов с электромиографических датчиков. Особое внимание уделено вопросам предварительной обработки исходных сигналов, включающей в себя цифровую фильтрацию, задание оптимального уровня, соответствующего состоянию покоя мышцы, и вычислению признаков сигналов. В статье огибающая электромиографического сигнала строилась на основе признака “средней энергии”, а определение участков мышечной активности осуществлялось с помощью двух порогов: адаптивного по уровню и фиксированного по времени. Непосредственно для обучения искусственной нейронной сети используются три признака, которые определяются в зависимости от требований к качеству обучения, либо по показателю различимости, либо полным перебором сочетаний признаков. Оптимизация набора признаков для обучения искусственной нейронной сети позволила достичь уровня правильных ответов более 97%.
Ключевые слова:
искусственная нейронная сеть, предварительная обработка сигнала, набор признаков, оптимизация, качество обучения, электромиография, бионическая кисть.