Аннотация:
Определение апериодического кристалла (квазикристалла) как твердого тела, характеризующегося запрещенной симметрией, свидетельствует о существовании нерешенной проблемы, поскольку взаимоисключающим образом апеллирует к основной теореме классической кристаллографии. Нами на примере разбиения Пенроуза исследуются свойства симметрии апериодических разбиений с целью установления допустимых групп симметрии квазикристаллов. Заполнению евклидова пространства по апериодическому закону ставится в соответствие действие бесконечного числа групповых элементов на некоторую фундаментальную область в неевклидовом пространстве. Делается вывод, что все локально эквивалентные разбиения имеют общую “родительскую” структуру и, следовательно, одну и ту же группу симметрии. Вводится в рассмотрение идеализированный объект – бесконечно измельченное разбиение. Показано, что его операциями симметрии являются операции подобия (поворотной гомотетии). Дается положительный ответ на вопрос о возможности композиции операций подобия с различными особыми точками. Показано, что преобразования апериодических кристаллов, сохраняющие ориентацию, изоморфны некоторой дискретной подгруппе группы Мёбиуса $PSL(2,\mathbb{C})$, т. е. могут быть реализованы как дискретные подгруппы полной группы движений пространства Лобачевского. Задача классификации допустимых типов апериодических разбиений сводится к процедуре перечисления названных дискретных подгрупп.
Поступила в редакцию: 10.04.2012 Принята в печать: 03.09.2012