RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2025, том 16, номер 1, страницы 49–59 (Mi emj525)

Measure of noncompactness approach to nonlinear fractional pantograph differential equations

A. El Mfadelab, S. Melliania

a Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
b Higher School of Technology, Sultan Moulay Slimane University, Khenifra, Morocco

Аннотация: The aim of this manuscript is to explore the existence and uniqueness of solutions for a class of nonlinear $\Psi$-Caputo fractional pantograph differential equations subject to nonlocal conditions. The proofs rely on key results in topological degree theory for condensing maps, coupled with the method of measures of noncompactness and essential tools in $\Psi$-fractional calculus. To support the theoretical ndings, a nontrivial example is presented as an application.

Ключевые слова и фразы: $\Psi$-fractional integral, $\Psi$-Caputo fractional derivative, topological degree theory.

MSC: 26A33, 34A08, 47H08

Поступила в редакцию: 20.12.2023

Язык публикации: английский

DOI: 10.32523/2077-9879-2025-16-1-49-59



© МИАН, 2026