RUS  ENG
Полная версия
ЖУРНАЛЫ // Discrete Applied Mathematics // Архив

Discrete Appl. Math., 2013, том 161, выпуск 16, страницы 2440–2459 (Mi dma2)

Patience of matrix games

K. A. Hansena, R. Ibsen-Jensena, V. V. Podolskiib, E. Tsigaridascd

a Aarhus University, Denmark
b Steklov Mathematical Institute, Russia
c INRIA Paris-Rocquencourt, France
d Universite Pierre et Marie Curie (Paris 6), France

Аннотация: For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for $n\times n$ win–lose–draw games (i.e. $(-1, 0, 1)$ matrix games) nonzero probabilities smaller than $n^{-O(n)}$ are never needed. We also construct an explicit $n\times n$ win–lose game such that the unique optimal strategy uses a nonzero probability as small as $n^{-\Omega(n)}$. This is done by constructing an explicit $(-1, 1)$ nonsingular $n\times n$ matrix, for which the inverse has only nonnegative entries and where some of the entries are of value $n^{\Omega(n)}$.

Поступила в редакцию: 28.09.2012
Исправленный вариант: 08.05.2013
Принята в печать: 10.05.2013

Язык публикации: английский

DOI: 10.1016/j.dam.2013.05.008



Реферативные базы данных:


© МИАН, 2026