Аннотация:
В настоящей работе исследуется топологическая структура множества решений задачи Коши для полулинейных дифференциальных включений дробного порядка $\alpha\in (1, 2)$ в банаховых пространствах. Предполагается, что линейная часть включений является линейным замкнутым оператором, порождающим сильно непрерывное и равномерно ограниченное семейство косинус оператор-функций. Нелинейная часть представлена полунепрерывным сверху многозначным оператором типа Каратеодори. Устанавливается, что множество решений задачи является $R_\delta$-множеством.