АНАЛИЗ И МОДЕЛИРОВАНИЕ СЛОЖНЫХ ЖИВЫХ СИСТЕМ
Случайный лес факторов риска как прогностический инструмент неблагоприятных событий в клинической медицине
К. И. Шахгельдянa,
Н. С. Куксинa,
И. Г. Домжаловa,
Р. Л. Пакb,
Б. И. Гельцерa a Владивостокский государственный университет,
Россия, 690014, г. Владивосток, ул. Гоголя, д. 41
b Дальневосточный федеральный университет,
Россия, 690922, г. Владивосток, о. Русский, п. Аякс, к. 10
Аннотация:
Целью исследования являются разработка ансамблевого метода машинного обучения, обеспечивающего построение интерпретируемых прогностических моделей, и его апробация на примере прогнозирования внутригоспитальной летальности (ВГЛ) у больных инфарктом миокарда с подъемом сегмента ST (ИМпST).
Проведено ретроспективное когортное исследование по данным 5446 электронных историй болезни пациентов с ИМпST, которым выполнялось чрескожное коронарное вмешательство (ЧКВ). Было выделено две группы лиц, первую изк оторых составили 335 (6,2%) больных, умерших в стационаре, вторую — 5111 (93,8%) — с благоприятным исходом лечения. Пул потенциальных предикторов был сформирован с помощью методов математической статистики. С помощью методов мультиметрической категоризации (минимизация p-value, максимизация площади под ROC-кривой-AUC и результаты анализа shap-value), деревьев решений и многофакторной логистической регрессии (МЛР) предикторы были преобразованы в факторы риска ВГЛ. Для разработки прогностических моделей ВГЛ использовали МЛР, случайный лес факторов риска (СЛФР), стохастический градиентный бустинг (XGboost), случай- ный лес, методы Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine и Stacking.
Авторами разработан метод СЛФР, который обобщает результаты прогноза модифицированных деревьев решений, выделяет факторы риска и ранжирует их по интенсивности влияния на вероятность развития неблагоприятного события. СЛФР позволяет разрабатывать модели с высоким прогностическим потенциалом (AUC = 0,908), сопоставимым с моделями CatBoost и Stacking (AUC: 0,904 и 0,908 соответственно). Метод СЛФР может рассматриваться в качестве важного инструмента для клинического обоснования результатов прогноза и стать основой для разработки высокоточных интерпретируемых моделей.
Ключевые слова:
ансамблевые методы машинного обучения, факторы риска, категоризация непрерывных переменных, аддитивное объяснение Шепли, интерпретируемые модели машинного обучения
УДК:
004.852
Поступила в редакцию: 06.08.2025
Исправленный вариант: 20.09.2025
Принята в печать: 11.10.2025
DOI:
10.20537/2076-7633-2025-17-5-987-1004