RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2025, том 17, выпуск 2, страницы 179–197 (Mi crm1263)

ЧИСЛЕННЫЕ МЕТОДЫ И ОСНОВЫ ИХ РЕАЛИЗАЦИИ

Суррогатный нейросетевой метод восстановления поля течения из однородного поля итерациями в расчетах стационарных турбулентных течений

М. Н. Петров, С. В. Зимина

Московский физико-технический институт, Россия, 141707, г. Долгопрудный, Институтский пер., д. 9

Аннотация: Последние годы получило широкое распространение применение нейросетевых моделей для решения задач аэродинамики. В основном такие модели, обученные по некоторому набору ранее полученных решений, позволяют предсказывать решения новых задач и являются в некотором смысле алгоритмами интерполяции. Альтернативным подходом может служить построение нейросетевого оператора, представляющего собой нейросетевую модель, которая воспроизводит поведение численного метода решения задачи. Такая модель позволяет находить решение задачи итерациями. В работе рассматривается вариант построения такого оператора с применением нейронной сети типа UNet с пространственным механизмом внимания для решения задач обтекания на прямоугольной равномерной сетке, общей для обтекаемого тела и поля течения. Для уточнения полученного решения предлагается и исследуется механизм коррекции решения. Анализируется вопрос устойчивости такого алгоритма решения стационарной задачи, проводится сравнение с некоторыми другими вариантами его построения: прием с продвижением вперед (pushforward trick), позиционное встраивание. Рассматривается вопрос выбора набора итераций для формирования обучающей выборки. Оценивается поведение решения при многократном применении нейросетевого оператора.
Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различными вариантами скругления при фиксированных параметрах набегающего потока с числом Рейнольдса $\mathrm{Re}=10^5$ и числом Маха $M=0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. При этом нейросетевая модель, используемая для построения оператора, имеет общий декодер для обеих компонент скорости. Проводится сравнение полей течения и профилей скорости по нормали и по обводу тела, полученных нейросетевым оператором и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают, что нейросетевой оператор позволяет находить решение с высокой точностью устойчивым образом.

Ключевые слова: аэродинамика, турбулентность, нейросетевой оператор, сверточная нейронная сеть, UNet, механизм внимания

УДК: 519.6

Поступила в редакцию: 04.12.2024
Исправленный вариант: 07.02.2024
Принята в печать: 10.03.2025

DOI: 10.20537/2076-7633-2025-17-2-179-197



© МИАН, 2026