Аннотация:
Предложен численный метод, аппроксимирующий уравнения динамики слабосжимаемого вязкого течения при наличии полимерной составляющей потока. Исследуется поведение течения под воздействием статической внешней периодической силы в периодической квадратной ячейке. Методика основывается на гибридном подходе. Гидродинамика течения описывается системой уравнений Навье – Стокса и численно аппроксимируется линеаризованным методом Годунова. Полимерное поле описывается системой уравнений для вектора растяжений полимерных молекул R, которая численно аппроксимируются методом Курганова – Тедмора. Выбор модельных соотношений при разработке численной методики и подбор параметров моделирования позволили на качественном уровне смоделировать и исследовать режим эластической турбулентности при низких числах Рейнольдса Re $\sim10^{-1}$. Уравнения динамики течения полимерного раствора отличаются от уравнений динамики ньютоновской жидкости наличием в правой части членов, описывающих силы, действующие со стороны полимерной компоненты. Коэффициент пропорциональности A при данных членах характеризует степень обратного влияния количества полимеров на поток. В статье подробно исследуется влияние этого коэффициента на структуру и характеристики потока. Показано, что с его ростом течение становится более хаотическим. Построены энергетические спектры полученных течений и спектры полей растяжения полимеров для различных величин коэффициента A. В спектрах прослеживается инерциальный поддиапазон энергетического каскада для скорости течения с показателем $k\sim-4$, для каскада растяжений полимерных молекул с показателем $-1,6$.