Аннотация:
Во многих встраиваемых системах и устройствах интернета вещей (IoT) применяются нейросетевые алгоритмы для различных задач обработки информации. При этом разработчики сталкиваются с проблемой недостаточности вычислительных ресурсов для эффективного функционирования, особенно в задачах реального (псевдо) времени. В связи с этим актуальной является задача нахождение баланса между качеством результатов и вычислительной сложностью. Одним из способов повышения вычислительной эффективности нейронных сетей, является применение архитектур нейронных сетей с ранними выходами (например, BranchyNet), позволяющие принимать решения до прохождения всех слоев нейронной сети, в зависимости от исходных данных при заданной достоверности результатов. Цель исследования: провести анализ применимости, эффективности и робастности нейронных сетей с ранними выходами (BranchyResNet18) в задачах компьютерного зрения. Анализ проводится на основе набора данных дорожных знаков GTSRB. Методология исследования представляет собой экспериментальный анализ эффективности на основе расчета количества операций с плавающей запятой (FLOP) для получения результатов с заданной точностью, и экспериментальный анализ робастности на основе генерации различных шумовых воздействий и состязательных атак. Результаты исследования: получены оценки эффективности нейронных сетей с ранним выходом и их робастность к непреднамеренным и преднамеренным возмущениям.
Ключевые слова:
нейронные сети с ранним выходом, повышение эффективности нейронных сетей, робастность, состязательные атаки.