RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2025, том 26, выпуск 1, страницы 99–115 (Mi cheb1518)

Гладкое многообразие сдвинутых решёток

Е. Н. Смирноваa, О. А. Пихтильковаb, Н. Н. Добровольскийcd, И. Ю. Реброваd, Н. М. Добровольскийd

a Оренбургский государственный университет (г. Оренбург)
b Российский технологический университет МИРЭА (г. Москва)
c Тульский государственный университет (г. Тула)
d Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула)

Аннотация: В предыдущей работе авторов заложены основы теории гладких многообразий теоретико-числовых решёток. Рассмотрен случай произвольных многомерных решёток.
В данной статье рассмотрен общий случай сдвинутых многомерных решёток. Отметим, что геометрия метрического пространств многомерных решёток гораздо сложнее, чем геометрия обычного евклидова пространства. Это видно из парадокса неаддитивности длины отрезка в пространстве сдвинутых одномерных решёток. Из наличия этого парадокса следует, что стоит открытой проблема описания геодезических линий в пространствах многомерных решёток, а также в нахождении формулы для длины дуг линий в этих пространствах. Естественно, что было бы интересно не только описание этих объектов, но и получение теоретико-числовой интерпретации этих понятий.
Дальнейшим направлением исследований может быть изучение аналитического продолжения гиперболической дзета-функции на пространствах сдвинутых многомерных решёток. Как известно, аналитическое продолжение гиперболической дзета-функции решёток построено для произвольной декартовой решётки. Не изучен даже вопрос о непрерывности этих аналитических продолжений в левой полуплоскости на пространстве решёток. Всё это, на наш взгляд, актуальные направления дальнейших исследований.

Ключевые слова: алгебраические решётки, метрическое пространство решёток.

УДК: 511.42

Поступила в редакцию: 10.12.2024
Принята в печать: 10.03.2025

DOI: 10.22405/2226-8383-2025-26-1-99-115



© МИАН, 2026