RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, номер 1, страницы 81–87 (Mi basm631)

On conharmonic curvature tensor of 6-dimensional planar Hermitian submanifolds of Cayley algebra

Mihail B. Banaru, Galina A. Banaru

Smolensk State University 4, Przhevalsky Street, Smolensk – 214 000 RUSSIA

Аннотация: In this paper, we consider the conharmonic curvature tensor of 6-dimensional planar Hermitian submanifolds of the octave algebra. The Hermitian (and in general case, almost Hermitian) structure on a such submanifold is induced by the so-called Gray–Brown 3-fold vector cross products in Cayley algebra. The main result of the work is the calculation of the so-called spectrum of the conharmonic curvature tensor for an arbitrary 6-dimensional planar Hermitian submanifold of the octave algebra. By the concept of the spectrum of a tensor, we mean the minimal set of its components on the space of the associated $G$-structure that completely determines this tensor.

Ключевые слова и фразы: almost Hermitian structure, conharmonic curvature tensor, Cartan structural equations, 6-dimensional planar submanifold of Cayley algebra.

MSC: 53B35, 53B50

Поступила в редакцию: 27.05.2025

Язык публикации: английский

DOI: 10.56415/basm.y2025.i1.p81



© МИАН, 2026