RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, номер 1, страницы 23–32 (Mi basm627)

Reverse Hardy inequalities via $\mu$-proportional generalized fractional integral operators

Bouharket Benaissaa, Juan E. Nàpolesb, Bahtiyar Bayraktarc

a University of Tiaret-Algeria
b Universidad Nacional del Nordeste and Universidad Tecnologica Nacional, Argentina
c Bursa Uludag University, Turkiye

Аннотация: In this paper, we present a further improvement of the reverse Hardy type inequality via $_{a^{+}}\mathfrak{I}_{\mu}^{\Phi}$ and $_{b^{-}}\mathfrak{I} _{\mu}^{\Phi}$, the proportional generalized fractional integral operators with respect to another strictly increasing continuous function $\mu$. We obtain a new result by using two parameters of integrability $p$ and $q$, some special cases are mentioned according to the choice of the function $\Phi$.

Ключевые слова и фразы: $\mu$-proportional generalized fractional integral operators, Hardy inequality, Hölder inequality.

MSC: 26A33, 26D10

Поступила в редакцию: 30.01.2023

Язык публикации: английский

DOI: 10.56415/basm.y2025.i1.p23



© МИАН, 2026