RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, номер 1-2, страницы 93–98 (Mi basm549)

Maximum nontrivial convex cover number of join and corona of graphs

Radu Buzatu

Moldova State University, 60 A. Mateevici, MD-2009, Chişinău, Republic of Moldova

Аннотация: Let $G$ be a connected graph. We say that a set $S\subseteq X(G)$ is convex in $G$ if, for any two vertices $x,y\in S$, all vertices of every shortest path between $x$ and $y$ are in $S$. If $3\leq|S|\leq|X(G)|-1$, then $S$ is a nontrivial set. The greatest $p\geq2$ for which there is a cover of $G$ by $p$ nontrivial and convex sets is the maximum nontrivial convex cover number of $G$. In this paper, we determine the maximum nontrivial convex cover number of join and corona of graphs.

Ключевые слова и фразы: convex cover, join of graphs, corona of graphs.

MSC: 68R10, 05C35, 05C69, 05C76

Поступила в редакцию: 10.12.2020

Язык публикации: английский



© МИАН, 2026