Эта публикация цитируется в
1 статье
Research articles
Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
Ruslan V. Skuratovskii Kiev, 03056, Peremogy 37, KPI Igor Sikorsky Kiev Polytechnic Institution, Ukraine
Аннотация:
It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups
$C_{p_i}, ~ p_i\in \mathbb{N} $, is equal to
$1$. The commutator width of direct limit of wreath product of cyclic groups is found. This paper gives upper bounds of the commutator width
$(cw(G))$ [1] of a wreath product of groups. A presentation in the form of wreath recursion [6] of Sylow
$2$-subgroups
$Syl_2A_{{2^{k}}}$ of
$A_{{2^k}}$ is introduced. As a corollary, we obtain a short proof of the result that the commutator width is equal to
$1$ for Sylow
$2$-subgroups of the alternating group
${A_{{2^{k}}}}$, where
$k>2$, permutation group
${S_{{2^{k}}}}$ and for Sylow
$p$-subgroups
$Syl_2 A_{p^k}$ and
$Syl_2 S_{p^k}$. The commutator width of permutational wreath product
$B \wr C_n$ is investigated. An upper bound of the commutator width of permutational wreath product
$B \wr C_n$ for an arbitrary group
$B$ is found.
Ключевые слова и фразы:
wreath product of groups, minimal generating set of the commutator subgroup of Sylow
$2$-subgroups, commutator width of wreath product, commutator width of Sylow
$p$-subgroups, commutator subgroup of alternating group.
MSC: 20B27,
20B22,
20F65,
20B07,
20E45 Поступила в редакцию: 01.06.2018
Исправленный вариант: 31.01.2020
Язык публикации: английский