RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 31, выпуск 1, страницы 84–108 (Mi adm790)

RESEARCH ARTICLE

On extension of classical Baer results to Poisson algebras

L. A. Kurdachenkoa, A. A. Pypkaa, I. Ya. Subbotinb

a Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
b National University, 5245 Pacific Concourse Drive, Los Angeles, CA 90045-6904, USA

Аннотация: In this paper we prove that if $P$ is a Poisson algebra and the $n$th hypercenter (center) of $P$ has a finite codimension, then $P$ includes a finite-dimensional ideal $K$ such that $P/K$ is nilpotent (abelian). As a corollary, we show that if the $n$th hypercenter of a Poisson algebra $P$ (over some specific field) has a finite codimension and $P$ does not contain zero divisors, then $P$ is an abelian algebra.

Ключевые слова: Poisson algebra, Lie algebra, subalgebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency.

MSC: 17B63, 17B65

Поступила в редакцию: 15.01.2021

Язык публикации: английский

DOI: 10.12958/adm1758



© МИАН, 2026