RESEARCH ARTICLE
On extension of classical Baer results to Poisson algebras
L. A. Kurdachenkoa,
A. A. Pypkaa,
I. Ya. Subbotinb a Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
b National University, 5245 Pacific Concourse Drive, Los Angeles, CA 90045-6904, USA
Аннотация:
In this paper we prove that if
$P$ is a Poisson algebra and the
$n$th hypercenter (center) of
$P$ has a finite codimension, then
$P$ includes a finite-dimensional ideal
$K$ such that
$P/K$ is nilpotent (abelian). As a corollary, we show that if the
$n$th hypercenter of a Poisson algebra
$P$ (over some specific field) has a finite codimension and
$P$ does not contain zero divisors, then
$P$ is an abelian algebra.
Ключевые слова:
Poisson algebra, Lie algebra, subalgebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency.
MSC: 17B63,
17B65 Поступила в редакцию: 15.01.2021
Язык публикации: английский
DOI:
10.12958/adm1758