RESEARCH ARTICLE
On characteristic properties of semigroups
Vitaliy M. Bondarenko,
Yaroslav V. Zaciha Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev
Аннотация:
Let
$\mathcal{K}$ be a class of semigroups and
$\mathcal{P}$ be a set of general properties of semigroups. We call a subset
$Q$ of
$\mathcal{P}$ characteristic for a semigroup
$S\in\mathcal{K}$ if, up to isomorphism and anti-isomorphism,
$S$ is the only semigroup in
$\mathcal{K}$, which satisfies all the properties from
$Q$.
The set of properties
$\mathcal{P}$ is called char-complete for
$\mathcal{K}$ if for any
$S\in \mathcal{K}$
the set of all properties
$P\in\mathcal{P}$, which hold for the semigroup
$S$, is characteristic for
$S$. We indicate a 7-element set of properties of semigroups which is a minimal char-complete set for the class of semigroups of order
$3$.
Ключевые слова:
semigroup, anti-isomorphism, idempotent, Cayley table, characteristic property, char-complete set.
MSC: 20M Поступила в редакцию: 07.09.2015
Исправленный вариант: 07.09.2015
Язык публикации: английский