RUS  ENG
Полная версия
СЕМИНАРЫ

Графы на поверхностях и кривые над числовыми полями
11 февраля 2026 г. 18:30, г. Москва, мехмат МГУ, ГЗ МГУ, аудитория 14-15, 18:30-20:30


Volumes of two-bridge knots in spaces of constant curvature

A. D. Mednykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Аннотация: We investigate the existence of hyperbolic, spherical or Euclidean structure on cone manifolds whose underlying space is the three-dimensional sphere and singular set is a given two-bridge knot. We present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone manifolds. Then these identities are used to produce exact integral formulas for volume of the corresponding manifold modeled in the hyperbolic, spherical and Euclidean geometries.

Язык доклада: английский


© МИАН, 2026